
Systronix
Expansion
Hardware

Technical Reference for
Systronix SBX2

LIMITED WARRANTY

The information in this manual is subject to change without notice and does not represent a commitment on the part
of Systronix, Inc. Systronix, Inc. makes no warranty, express or implied, for the use or misuse of its products, which
are provided with the understanding that you, the user, will determine fitness for a particular application. Systronix
assumes no responsibility for any errors which may appear in this manual. No part of this manual may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and
recording, for any purpose other than the purchaser's personal use without the written permission of Systronix, Inc.

Systronix reserves the right to revise this documentation and the software and hardware described herein or make
any changes to the specifications of the product described herein at any time without obligation to notify any person
of such revision or change.

TRADEMARKS

Systronix is a registered trademark of Systronix Inc, TILT, STEP, STEP+, STEP.IR, SaJe and SBX2 are trademarks
of Systronix Inc, INTEL and Intel are registered trademarks of Intel Corporation. Microsoft, Windows, and
MS-DOS are registered trademarks of Microsoft Corporation. TINI is a trademark of Dallas Semiconductor.

Systronix®, Inc.
555 South 300 East

Salt Lake City, UT 84111
TEL: 801-534-1017
FAX: 801-534-1019
www.systronix.com

email: support@systronix.com

Copyright © 2000, 2001 by Systronix, Inc.
All rights reserved.

Revised - November 8, 2001

Table of Contents

SBX Standard . Page -1-
SBX2 Addressing and I/O MAP . Page -1-

SBX2 with TINI and STEP boards . Page -1-
SBX Interrupts with TINI and STEP . Page -1-
SBX2 UART with TINI . Page -1-

SBX2 with HSM550 . Page -2-
SBX2 with uCAN2 . Page -2-
SBX2 with SaJe . Page -2-

Addressing . Page -2-
Chip Selects . Page -2-
Interrupts . Page -2-

SBX2 Address and Data Map . Page -2-
KEYPAD INTERFACE . Page -5-

How the Keypad is Scanned and Encoded . Page -5-
Reading the Keypad Register . Page -5-
Polling the Keypad . Page -6-
Using Keypad Interrupts . Page -6-
Connecting a Keypad . Page -6-

KEYPAD LEGENDS . Page -9-
DIGITAL I/O (24 BITS) . Page -9-
LCD INTERFACE . Page -9-

SBX2 Java API . Page -10-

SBX2 Technical Reference - November 8, 2001 - Systronix®, Inc.

Page -1-

 SBX Standard

SBX2 conforms to the iSBX specification as originally defined by Intel as part of Multibus, also
defined in Standard IEEE-796. There are reportedly some minor differences between the Intel
specification and the IEEE Standard.

We have a copy of the SBX specification in an old Intel Multibus I Architecture Reference Book,
order number 210883-002, probably long out of print. The IEEE-796 specification is still available
(for a fee) from the IEEE; try them on the web at www.ieee.org.

The SBX interface uses 2 chip selects (MCS0 and MCS1), three address lines (A2, A1, and A0), and
read (RD) and write (WR) strobes.

 SBX2 Addressing and I/O MAP

SBX2 is intended to be memory-mapped into a host board, as part of its data space.

SBX2 with TINI and STEP boards

STEP sockets boards map the SBX connector into data space at 0x38006X for all but the UART, and
 0x38008X for the SBX2 UART. This is derived from these equations:

MCS0 = CE3 * A19 * /A16 * /A7 * A6 * A5
MCS1 = CE3 * A19 * /A16 * A7 * /A6 * /A5

Other addresses are don't cares. So making don't care bits '0',
MCS0 = 0x38006[0-7]
MCS1 = 0x38008[0-7]

Notes for above:
* = logical AND
/ = logical negation (not asserted)

The other part of the puzzle is where these addresses [0-7] refer at each chip select. That is described
in the SBX2 Address and Data Map.

SBX Interrupts with TINI and STEP

TINI only has one external interrupt, so the two SBX2 interrupts MINT0 and MINT1 are logically
ORed by STEP hardware into a single active low EXTINT for TINI.

On SBX2, MINT1(H) is driven directly by the UART interrupt output with no additional logic.
MINT0(H) is driven by the keypad scanner logic. When you use SBX2 with STEP, and both the
keypad and UART can generate interrupts, you will need to determine the source of the interrupt
with a firmware routine which checks both the keypad and UART.

SBX2 UART with TINI

SBX2 UART is TINI’s serial2. The standard TINI and javaxcomm serial drivers support SBX2's
UART. Since SBX2 uses a 16C550 UART chip which is the same as the former Dallas e50 socket

SBX2 Technical Reference - November 8, 2001 - Systronix®, Inc.

Page -2-

board’s added UARTs, it works exactly the same as the e50 did.

One caution: in TINI firmware version 1.02, the baud rate of external UARTs is limited to 57600.
This limit may be removed in future TINI firmware revisions.

SBX2 with HSM550

MCS0 = 0xFC[0-7]X -- parallel port, keypad, LCD, buzzer, etc.
MCS1 = 0xFC[8-F]X -- UART

SBX2 with uCAN2

MCS0 = 10:0C[0-7]X -- parallel port, keypad, LCD, buzzer, etc.
MCS1 = 10:0C[8-F]X -- UART

SBX2 with SaJe

Addressing

SaJe uses a 32-bit processor with a 32-bit data path. SaJe addresses 0 and 1 refer to bytes within a
32-bit word. SBX2 on SaJe is right-justified within the 32-bit data word. On SaJe, SBX2 shifts its
addresses left two bits like this:

SBX2 A0 = SaJe address A2
SBX2 A1 = SaJe address A3
SBX2 A2 = SaJe address A4

This enables addressing SBX2 as if it were a 32-bit wide data device and discarding the upper 24
data bits. Instead of occupying low address locations [0x00..0x07], SaJe accesses SBX2 at low
addresses [0x00..0x1C] with only every fourth location used.

Chip Selects

On SaJe, SBX2 chip selects occupy the lower portion of CS5. CS5 defines 4 MBytes from
0x0140_000 through 0x017F_FFFF.

MCS0 = 0x0140_0000 through 0x0140_FFFF or 0x0140_XXXX -- parallel port, keypad, LCD,
buzzer, etc.

MCS1 = 0x0141_0000 through 0x0141_FFFF or 0x0414_XXXX -- UART

Interrupts

The two SBX interrupts are mapped as follows:

MINT0(H) is tied to GPIOA1. This is the SBX2 keypad interrupt.
MINT1(H) is tied to GPIOA2. This is the SBX2 UART interrupt.

SBX2 Address and Data Map

The following table describes the addresses used by SBX2 and the data mapping at those addresses.

SBX2 Technical Reference - November 8, 2001 - Systronix®, Inc.

Page -3-

SBX2 Address and Data Map
note that 0 =not asserted and 1= asserted, regardless of voltage level. For example, address lines are
asserted high, but chip selects MCSX, RD and WR are asserted low. MCS0=1 means this chip select
is asserted (and happens to be active low), while A2=1 is also asserted but active high. Don’t confuse

voltage levels with the boolean assertion level.

MCS0 MCS1 A[2..0]
SaJe A[4..2]

RD WR Function

1 0 000 1 0 DINPRD0 - (note 1) read data input
register0. Reads the I/O bit state with
no inversion. DIO(H) reads as DINP=1.
DINP0.7 - DIO7(H)
DINP0.6 - DIO6(H)
...
DINP0.0 - DIO0(H)

1 0 000 0 1 DOUTWR0 - (note 1) write data output
register0, note that setting a bit to a ‘1'
drives that open-drain I/O bit LOW,
DOUT0.X=1 means DIOX(L)
DOUT0.7 - DIO7(L)
DOUT0.6 - DIO6(L)
...
DOUT0.0 - DIO0(L)

DINPRD1

1 0 011 1 0 Keypad read: (note 3)
KEY.7 - Keypress now
KEY.6 - unused
KEY.5 - unused
KEY.4 - Y msb
KEY.3 - Y
KEY.2 - Y lsb
KEY.1 - X msb
KEY.0 - X lsb

1 0 100 1 0 LCD data read

1 0 100 0 1 LCD data write

1 0 101 1 0 LCD instruction read

1 0 101 0 1 LCD instruction write

1 0 110 1 0 No read function

1 0 110 0 1 MISC data output register U5, with eight
bits defined as follows: (note 4)
MISC.7 - local LED on (L)
MISC.6 - LCD backlight bit 1 (L)
MISC.5 - LCD contrast clock
MISC.4 - LCD contrast up (H)
MISC.3 - LCD backlight bit 0 (L)
MISC.2 - buzzer on (L)
MISC.1 - external indicator on (L)
MISC.0 - UART DCE DCD (L)

SBX2 Technical Reference - November 8, 2001 - Systronix®, Inc.

Page -4-

1 0 111 1 0 Not used

0 1 XXX X X read and write 16C550 UART when
CS1. See UART info for details.

Note 1: the output and input registers are tied together, allowing the input register to read the value of
the output register. The output registers are octal, open-drain FET registers. Writing a ‘0' to an output
bit clears the bit, allowing the output to float. All outputs are pulled high through 10 Kohms to 5V.
If you want to tie an output to a 12V load that’s fine. The existing 5V pullups will simply draw (12-
5)/10K = 700 uA of current per bit. Writing a ‘1' to an output bit causes that open-drain output to go
asserted low. An individual FET can sink at least 150 mA, multiple outputs can be limited by the
total device power dissipation discussed in the digital I/O section of this manual. The input register
reads the state of the I/O bit, through some current-limiting resistors. To use an I/O bit as an input,
first drive the output bit with a ‘0' to let it float high and then pull the I/O bit low with an external
switch, relay, or other contact closure. Because the open-drain output buffer inverts, if you write
0xA5 to the output, you will read back 0x5A, the complement, on the input buffer.

Note 3: The keypad can be read at any time. Reads are non-destructive of data but do clear an active
keypad interrupt.

Note 4: The LCD is assumed to use an LED backlight with Vcc on Pin 15 of LCD connector P3, and
ground on Pin 16. On SBX2, Pin 16 (the LED cathode) is pulled to ground through two 10-ohm
current-limiting resistors, one of which may be bypassed by JP1.

LED Backlight Intensity Control

MISC.
6

JP
1

MISC.
4

BRIGHTNESS COMMENT

0 off 0 off

0 off 1 low

0 on 0 off

0 on 1 medium

1 off X medium

1 on X max Caution! See note below

Caution: only install JP1 if the LED backlight has a built-in current-limiting resistor, otherwise you will draw
too much current through the backlight. This could cause SBX2 to overload the system power bus, reset
the host board and/or damage the LED backlight.

SBX2 Technical Reference - November 8, 2001 - Systronix®, Inc.

Page -5-

 KEYPAD INTERFACE

How the Keypad is Scanned and Encoded

The keypad Y inputs are all pulled high through 10 Kohms. The X lines of the keypad are
sequentially driven low with a 2-bit counter running at 3.6864 MHz. This creates 272 nsec-wide low
pulses on the X lines with a 25% duty cycle. As the X lines are driven, the Y lines are scanned to see
if any of the X line pulses appear in the Y inputs. As soon as one appears, then a key is assumed to be
making the connection between that X output and that Y input. The value of the X counter gives the
encoded row value (0x0, 0x1, 0x2, 0x3) and the value of the Y input on which the pulse was detected
is encoded into 3 bits (0x0 - 0x5). This supports a keypad of up to four X lines and five Y lines.

After a power up or reset (via the SBX RST signal), the value in the keypad register is 00. As soon as
a keypress is detected, scanning stops and a debounce counter of 16 msec starts. If the keypress
bounces or is released completely, the scanner starts over. If the key remains pressed for the
debounce period, its value is latched into the keypad register, and the keypad interrupt asserts,
driving SBX MINT0 to an asserted state. Keypad data in the register is always debounced. If the key
is released, INT0 negates at the next scan clock (270 nsec) and cannot assert again until it has been
re-debounced.

Since the data is latched and can’t change for at least a 16 msec debounce delay, keypad data cannot
possibly change more frequently than every 16 msec. If you are driving the keypad inputs with some
kind of digital input (a hall effect switch perhaps), the maximum frequency which can be sampled is
62.5 Hz.

KEYPAD REGISTER (location 3) BIT DEFINITION

7 6 5 4 3 2 1 0

1=Keypress is happening now (Key Fresh)0 0 Y msb Y Y lsb X msb X lsb

Keypad data reads are non-destructive. As long as a key is being pressed, and after it is debounced,
the fresh bit (bit 7) will be a 1. If you are polling the keypad, this is how you can detect new keypad
data. The keypad interrupt MINT0 asserts HIGH but is cleared by reading the keypad register, or by
releasing the key. Data in the keypad register is always debounced and “clean”.

If a key is being held down, and the controller responds to it by reading the keypad register, the
keypad interrupt MINT0 will be cleared. If the key remains pressed, another interrupt will occur one
debounce period later. During this time, as long as the key remains pressed, the Key Fresh bit will
remain a 1.

If a key is pressed, but the key is released before the controller responds to it, the keypad data will
still be present, but the Key Fresh bit will have cleared to a 0, and MINT0 will no longer be asserted.
The last-debounced value will remain readable in the keypad register, until a new key is debounced.

Reading the Keypad Register

The keypad scanner runs off the SBX2 3.6864 MHz crystal, which is asynchronous to the host
processor which is running your application. Even though the keypad is debounced and the data in
the keypad register is always valid in relation to the keypad, if you are polling the keypad, it could be
changing in relation to the host processor just at the moment you read it. The chance this will happen

SBX2 Technical Reference - November 8, 2001 - Systronix®, Inc.

Page -6-

is very small, but the probability is finite. If the controller data read time is 50 nsec, then the chance
of reading a changing value is about 50 nsec out of 16 msec, or about 3 parts per million. This
assumes the keypad data changes every 16 msec which of course it does not for manual keypad
presses.

Therefore, to be certain your polling controller is reading a valid value, you might consider requiring
that the same value be successively read twice.

If you are using an interrupt driven keypad handler, then the keypad data is much less likely to be
changing when you respond to the interrupt. As long as you respond within 16 msec the data cannot
possibly be changing since 16 msec is the keypad debounce period. If you take more than a debounce
period to respond, there are two possibilities. First, the key could be released in which case the Key
Fresh bit only might be changing. Second, a different key could have been pressed which will change
the keypad data.

Polling the Keypad

If you will be polling the keypad, check the Key Fresh bit to see if a key is currently being pressed.
It’s hard for a human to press a key more than about twice per second. If you poll for a key 10 times
per second you will give the user the feeling of a responsive system. It’s possible that the keypad
register could be in the process of changing at the moment you poll it, so it is sensible to require two
identical reads before trusting the data. (Don’t confuse this asynchronous keypad data changing with
the key debouncing which is always performed by the SBX2 keypad scanner.)

To implement a spinner, ‘jog’ a value, or increment/decrement a value at a variable rate, count the
number of successive polls for which Key Fresh is asserted and the key data is the same as the last
poll. After half a second or so you can switch to a faster update or increment/decrement rate. Clear
the counter as soon as Key Fresh is not a 1, or the data changes.

In Java, a thread could be used to poll the keypad every 100-200 msec. If you implement this before I
get around to it let me know how you did it and how it worked via email: support@systronix.com.

Using Keypad Interrupts

You can implement a keypad routine based on either an edge- or level-sensitive interrupt. MINT0 is
asserted high. Since there will always be some latency from the assertion of the interrupt until you
read the register, the data in the register will always be stable when read. As long as you respond
within one debounce period (16 msec), there is no way the keypad data can be changing at the instant
you read the register. It takes one period to debounce the key, latch the data, and assert the interrupt.
If the key is released, or a different key pressed, it will take another debounce period (16 msec) for
the data to change from the value it was when the interrupt asserted.

Connecting a Keypad

Connect a "matrix-pinout" keypad with up to 4 rows and 5 columns (or vice versa) to the 1x9 header
P1. Keypads are available from Systronix and many electronic supply distributors. Membrane
keypads with a flex cable tail usually have a color dot or arrow on pin 1 of their receptacle. J1 is
provided to let you add other keypad connectors, or to cut and reroute keypad signals. J1 has
straight-through connections on the back side of the PC board connecting one row of pins (which
come from the keypad header) to its other row (which are connected to the keypad scanner).

SBX2 Technical Reference - November 8, 2001 - Systronix®, Inc.

Page -7-

If your keypad requires significantly different row and column wiring, you can cut the traces on the
back of the PC board and wire-wrap, solder, or jumper whatever connections you need.

EXAMPLE KEYPAD CONNECTOR PINOUT

9 8 7 6 5 4 3 2 1

COL5 COL4 COL3 COL2 COL1 ROW4 ROW3 ROW2 ROW1

“Row” and “column” are relative. The keypad scanner doesn’t care if you swap them. What is
important is that all the row outputs be connected to keypad lines which are orthogonal to the column
inputs. You can’t have some of the SBX2 row outputs going to keypad rows and some to columns,
since the scanner can only detect a connection between the SBX2 row outputs and the column inputs.

If your keypad does not have the above pinout, don't panic! As long as your keypad rows and
columns are connected to any rows and columns of the keypad header, you can correct other wiring
easily in a keypad lookup table. For example, you can fix a swap between row 1 and row 4 in a
lookup table. But if a keypad row is swapped with a keypad column it may not be possible to sort this
out in a lookup table. In order for the keypad to be scanned correctly,

KEYPAD ENCODER MAPPING
This is what the output of the SBX2 keypad scanner would be for an ideal keypad wired
straight to SBX2. The Key Fresh bit is not shown. Values are binary on the top (just the five
lower bits, grouped YYY XX) and hexadecimal below that. Add 0x80 to each hex number to
get its value with the Key Fresh bit asserted. Note that there are several unused,
‘impossible’ values -- anything with register bits 6 and 5 set. Also note that a binary Y value
of 000 means no key has been pressed, valid values are 001-101. Valid X values are 00-11.

ROW/COL Col Y1 Col Y2 Col Y3 Col Y4 Col Y5

Row X1 001 00
0x04

010 00
0x08

011 00
0xC

100 00
0x10

101 00
0x14

Row X2 001 01
0x05

010 01
0x09

011 01
0x0D

100 01
0x11

101 01
0x15

Row X3 001 10
0x06

010 10
0x0A

011 10
0x0E

100 10
0x12

101 10
0x16

Row X3 001 11
0x07

010 11
0x0B

011 11
0x0F

100 11
0x13

101 11
0x17

SBX2 Technical Reference - November 8, 2001 - Systronix®, Inc.

Page -8-

SYSTRONIX 4x4 KEYPAD #2702
This map shows the value of each key as if it were written on the keypad. As you press keys
on the keypad and read their hexadecimal value from SBX2, this is what you would obtain.
Note that rows 1 and 2 are swapped in the keypad. Note that this mapping assumes pin 1 of
the keypad connector to be the rightmost pin as you face the keypad with the connector tail
emerging from the top of the pad. On SBX2, this pin1 is aligned with P1.2, the “Y2" input. The
key fresh bit is masked off, just the lower 5 bits of the keypad register are shown. Note that

for this keypad, the upper left corner of the keypad is X2 and Y4.

ROW/COL Col 4 Col 3 Col 2 Col 1

Row 1 0x11 0x0d 0x09 0x05

Row 2 0x10 0x0x 0x08 0x04

Row 3 0x12 0x0e 0x0a 0x06

Row 4 0x13 0x0f 0x0b 0x07

DESIRED KEYPAD LAYOUT
This possible keypad layout is similar to the numerical keypad on your PC. The left arrow is
the backspace/rubout key. This is the standard keypad legend layout we provide with our

4x4 keypad 2702.

7 8 9 7

4 5 6 8

1 2 3 9

ESC 0 . ENTR

You can remap keys in a Java or C switch-case construct, or with an array lookup. The easiest way to
remap keys in 8051 assembly code is in a lookup table such as this.

key_get_val:
gosub key_get_data

#ASM
mov DPTR,#__KEY_DAT ; addr in DPTR
movx A,@DPTR ; put value into acc
add A,#02H ; adjust for jump
movc A,@A+PC ; get lookup value into acc
sjmp OVER_KEY_TABLE ; jump over data

;
; lookup data entries
; this translates Systronix keypad 2702 into the keys used
; in our 8051 based systems. Note that pin 1 of the keypad connector is
; the rightmost pin as you face the keypad with the flex cable
; extending away from you, out of the top of the keypad.
;
; 1xH are the non-numeric keys

DB 14H ; 0 - del/backspace
DB 15H ; 1 - up arrow
DB 13H ; 2 - down arrow
DB 12H ; 3 - enter
DB 06H ; 4 -
DB 09H ; 5 -
DB 03H ; 6 -
DB 11H ; 7 - dec point
DB 05H ; 8 -
DB 08H ; 9 -
DB 02H ; A -
DB 00H ; B -

SBX2 Technical Reference - November 8, 2001 - Systronix®, Inc.

Page -9-

DB 04H ; C -
DB 07H ; D -
DB 01H ; E -
DB 10H ; F - escape

OVER_KEY_TABLE:
movx @DPTR,A ; store value in KEY_DAT

#ASM_END
return

 KEYPAD LEGENDS

If your ordered a keypad and enclosure from us, they will probably be delivered assembled and
tested, with the keypad legends shown on the attached mechanical drawing.

The keypad #2702 also available with no imprinted legends. In this case, it comes in two pieces: the
actual membrane keypad and a protective overlay with a clear area for each key. You can easily
create your own legends on a word processor or drawing program. Copy them onto 20 lb bond paper
on a laser printer (heavier paper reduces tactile feedback). Or you can use a color photocopy or a
color inkjet print for a more elaborate custom appearance. You can easily and quickly make low-
volume custom keypads which look like they are an expensive full-custom design.

The keypad and its protective overlay are intended to be held together by the adhesive strips on the
keypad. Position your legends (either in strips or a whole sheet) over the keypad. Peel off the
adhesive release liner and position your legends. Be sure your legends are small enough to leave a
border of adhesive around them to hold the overlay. Press the overlay carefully in place. This
adhesive is very tenacious, so you only get one attempt at this!

Finally, the keypad back also has laminated adhesive for permanent mounting to an enclosure or
panel. Be sure the mounting surface is clean - some isopropyl alcohol will remove any grease or oil
from plastic and metal surfaces. Line up the keypad carefully since the adhesive is very permanent
and cannot be easily repositioned.

 DIGITAL I/O (24 BITS)

At the moment the best digital I/O documentation in addition to the address map above is in the
javadocs in the SBX2 JAR file at http://www.systronix.com/expansion/sbx2/sbx2.htm

 LCD INTERFACE

At the moment the best LCD documentation in addition to the address map above is in the javadocs
in the SBX2 JAR file at http://www.systronix.com/expansion/sbx2/sbx2.htm

SBX2 Technical Reference - November 8, 2001 - Systronix®, Inc.

Page -10-

SBX2 Technical Reference - November 8, 2001 - Systronix®, Inc.

Page -11-

SBX2 Java API

See the documentation and JavaDocs online at http://www.systronix.com/expansion/sbx2/sbx2.htm.
An extensive Java library for TINI and SaJe is under development for release 4Q 2001. Preliminary
versions will be posted online in the SBX2 area of our website.

